
2024-04-12-JITs vs. Fast Interpreters

A JIT is Eval	
2
Byte Code Interpretation	
4
What Kinds of Code Benefit From Compilation and What Kinds Don’t
Benefit?	
5
Appendix	 7

1

A JIT is Eval

A JIT is essentially Eval.

Eval is essentially the compiler.

A compiler interprets the source code, but, does so at “compile time” in hopes of
reducing the need for some interpretation at “run time”.

A compiler is a preprocessor that evaluates certain bits of code at “compile time”
in hopes of reducing the amount of work required at “run time”. The work doesn’t
go away, it just gets moved into the preprocessor.

Additionally, repetitive work can be reduced by doing it only once, then reusing
the result multiple times. If possible, the compiler performs the work itself and
installs the result into the “run time” code (the “binary” executable or object file).
If not possible, the compiler rearranges the “run time” code such that it needs to
perform the work once at “run time”, and gets to reuse the work instead of
recomputing it each time the result is needed.

Furthermore, some patterns of use, such as looking up the value of variables in
some sort of table, can be reduced to simpler, cheaper code sequences that
reduce the overhead of lookup. Compilers split up the lookup table under the
hood, and, create little, cheaper lookup tables using the stack instead of a heap.
Stack operations are often better supported by hardware (opcodes) than heap
operations.

To perform such preprocessing, compilers require programmers to designate
variables as being “local” and “static” and “scoped”, versus being “global” and
“persistent”.

Code that contains no opportunities for optimization, such as repeated
evaluations or loops, is “straight-line code”, and, may not actually benefit from
being compiled.

A JIT tracks statistics about bits of code. When the statistics indicate that a piece
of code is being used repetitively, the JIT compiles the piece of code in hopes of
amortizing the cost of compiling (eval()ing) the code versus running the code
many times.

2

Tracking such information requires extra work.

For example

...
y := 1 + 2
z := 1 + 2
...

Might be compiled as...

...
temp := 1 + 2
y := temp
z := temp
...

Or,

...
loop

a [i] := 1 + 2
end loop
...

(Ignoring the other inner details of the loop, for example the increment and exit
condition)

Might become

...
temp := 1 + 2
loop

a [i] := temp
end loop
...

3

Or

...
local y := 1
global z := 2
...

Might allow the compiler to preprocess the code such that lookup up for “y” is
cheaper than the lookup for “z”.

If the source code doesn’t contain sequences such as the above, then adding the
overhead of including JIT tracking might not improve the execution of the
compiled code. In fact, adding a JIT might slow the code down, due to the extra
overhead of tracking information needed by the JIT.

Byte Code Interpretation

A major use-case for compilation is to remove the repetitive work required to read
and interpret a script (“code”) character-by-character.

An easy optimization for these situations is to simply build a preprocessor that
reads scripts character-by-character and compiles them into byte-codes that can
be repetitively processed at runtime.

Byte-codes are fixed-size encodings of character sequences. Hardware can
usually interpret fixed-size encodings more efficiently. For example, the string 1

“while” might be encoded as a single integer, say 42. A hardware CPU can deal
with a single number, like 42, more efficiently than with words that are sequences
of characters. Often, character sequences are of unknown length and require
looping for interpretation, whereas encodings of words as integers are fixed size
in length, don’t require looping, and, can be reduced to very efficient operations
at the hardware CPU level.

 Note that a hardware CPU is an interpreter. It is just a really fast interpreter, because it is 1

implemented in hardware instead of being implemented in software.

4

Once code has been preprocessed into byte-code, it can run much faster at “run
time”. Can the code be further optimized to run even faster? The answer depends
on the type of sequences contained in the code.

Calculations tend to require repetitive operations which tend to contain
instruction sequences that provide opportunities for greater optimization.

Other kinds of code, that does not perform a great deal of calculation, like
positioning advertisements on web pages, or reacting to asynchronous events
(like GUIs reacting to mouse movement, robots reacting to sensor data, etc.)
don’t provide as much opportunity for optimizations such as described above,
and, might never benefit from the extra work of tracking JIT information at “run
time”.

What Kinds of Code Benefit From Compilation and What Kinds Don’t
Benefit?

In general, code that computes values using loops and recursion can benefit from
compilation.

In general, straight-line code might not benefit from compilation. Compiling this
kind of code is moot and causes inefficiency in the workflow. The workflow
requires an extra compilation preprocessing step before being run, instead of
simply skipping the preprocessing step and running the code.

Note, too, that computer nodes physically distributed in space - like on the
internet, or even in robotics - cannot, reasonably, use concepts such as looping
or recursion in the large. Nodes can use these concepts internally, but must resort
to message passing when communicating with other, distributed nodes. Attempts
to fake out concepts like looping, recursion, function-calling , etc., in distributed 2

situations, say by using concepts such as RPCs results in extra overheads and
inefficiencies.

The “killer app” for compilation is the conversion of text into bytecodes.

 Function-based code causes ad-hoc blocking. The caller must block - suspend itself - until 2

the callee returns a result. Programmers had to expend extra effort to invent the - inefficient -
concept of preemption-based operating systems in order to support the paradigm of function
calling. CPUs support subroutines. The paradigm of function-calling is but one way to use the
more general concepts of subroutines.

5

Secondarily, it looks like compilation of variable lookup using static, scoped
variables should be a “killer app”, too, but, the restrictions imposed by this
regime tend to restrict progress in coding. For example, lexical scoping removes
names from variables and converts these into simple numeric offsets into a stack
of slots. This makes concepts like introspection more difficult to conceive of.  3

 You can do introspection using static scoping, but, this requires extra work and creates an 3

impedance mismatch that tends to prevent imaginative uses of the idea. Another example is
the concept of macros. Macros were invented in dynamically-scoped Lisp. A simple
unhygienic, Lisp macro for an IF-THEN-ELSE construct is approximately one line of code,
whereas the same macro expressed in hygienic form is about one page of code. It seems
unlikely that Lispers would use macros as frequently if they had to stop and think about niggly
details each time they wanted to abstract their code using a macro. In fact, hygiene is free if
the macro processor acts as a pure preprocessor instead of being wound deeply into the
bowels of the same language. In relatively rare situations, unhygienic macros result in
debugging nightmares. The invention of hygienic macros prevents those specific cases of bugs
by warping the base language. It might be more useful to leave the base language alone and to
create error-checking linters that detect the potential for bugs due to the lack of hygiene.
Creating such linters is more in line with the concepts of “design rule checking” found in
electronics design practices.

6

Appendix

7

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	A JIT is Eval
	Byte Code Interpretation
	What Kinds of Code Benefit From Compilation and What Kinds Don’t Benefit?
	Appendix

